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THEORY OF TWO-PHASE TRANSPIRATION
COOLING SYSTEMS, II

M. M. Levgtan, T. L. Perel'man,* UDC 536.248.2
and T. I. El'perin

A statistical mode of bubblinginporous solids is formulated. The theory developed is used for
closing the system of transport equations for a two-phase transpiration cooling system.

We shall consider here the problem of hydrodynamics and heat exchange in two-phase transpiration cool-
ing systems. In our previous paper {1], we considered the case of a porous solid consisting of capillaries with
equal or variable cross sections. However, although this model is of practical interest [2], the more often en-
countered porous materials with a highly complicated void structure remain outside the scope of applicability
of the developed theory. We shall consider here the model of liquid bubbling in porous systems ofthe fluidized-
solid and use it as a basis for writing the macroscopic continuum equations which describe the hydrodynamics and
heat exchange in two-phase transpiration cooling systems.

Statistical Model of Bubbling in a Porous Solid

The bubbling of a liquid filtering through a porous material occurs in the following manner. A vapor bub-
ble which has formed in a certain pore grows in volume, fills the entire pore, and then passes into the neighbor-
ing pores along the links connecting this pore with the others. Asa result, a vapor-filled cavity forms inside

*Deceased. "

A. V. Lykov Institute of Heat and Mass Transfer, Academy of Sciences of the Belorussian SSR, Minsk.
Translated from Inzhenerno-Fizicheskii Zhurnal, Vol. 31, No. 4, pp. 663-668, October, 1976. Original article
submitted October 28, 1974.

This material is protected by copyright registered in the name of Plenum Publishing Corporation, 227 West 17th Street, New York, N.Y. 1 0011. No ;{art
of this publication may be repreduced, stored in a retrieval system, or transmitted, in any form or by any means, electronic, mechanical, photocopying,
microfilming, recording or otherwise, without written permission o, f the publisher. A copy of this article is available from the publisher for $7.50.

1180



Fig. 1. Coordinates of a vapor
cavity in the phase space.

the porous material. This cavity moves inside the porous material together with the liquid flow. As it moves,
the cavity continues to grow because it is fed by evaporation from the liquid.

The liquid column in front of the vapor cavity moves faster than the liquid behind which there is no vapor
cavity. This occurs because of the fast growth of the cavity volume. As a resulf of acceleration of the liquid
column, the pressu're drop across it increases, which hinders the development of another cavity in this column.
Thus, the development of two cavities side by side is unlikely, as is the case in the development of a vapor lock
in an individual capillary [3].

Let us write the equation describing the statistical behavior of such vapor cavities. Each cavity is char-
acterized by the following set of parameters (see Fig. 1): x, is the cavity coordinate directed across the porous
specimen layer; x, is the cavity length; and x; is the transverse dimension of the cavity. In this phase space,
we introduce the density of vapor cavities N{t, x,, x,, X;) and define it so that, for the unit cross section of the
specimen, N(t, x{, x,, x;)dx,dx,dx; is equal to the number of cavities in the phase space cell dx,dx,dx; near the
point x, x,, x;. We write the transport equation for this quantity:

N Sy duN _ . )
Ty e R
i=1
The source R* is defined by
R* == A(x;)8(%,)8(xy), @

where the §-function accounts for the fact that the dimensions of the nascent cavities are of the same order as
the dimensions of the porous structure cell, i.e., they are close to zero. If we separate in A(x,) the term de-
pending explicitly on the coolant superheat and, through it, also on x,, as was done in [1], we can rewrite (2) in
the following form:

R* = ks, 0(x)8(1,)5(%;), @)

where k depends on the porous structure characteristics, for instance, the porosity & (x,). Therefore, generally,
k =k(x;). The expression for w (x,) is given in [1]. The quantity 8 is defined below,

Equation (1) holds if eithe r the density of cavities is low or the layer within which the cavities evolve is
sufficiently thin, so that mutual interaction of cavities can be neglected.

The liquid -vapor interface inside the specimen has a highly irregular shape, which varies constantly
with a fluctuation amplitude comparable to the thickness of the liquid bubbling region inside the specimen. The
shape and the position of this surface can vary under the influence of several factors: the translational motion
of the liquid forced through the specimen; the fact that the liquid column pushed forward by the growing vapor
cavity moves faster than the liquid without a cavity behind it; and the interaction between the cavity and the in-
terface at the moment when the cavity reaches it and collapses. Only a statistical description of interface
makes sense. Subsequently, we shall assume that any straight line parallel to the x; axis intersects the liquid—~
vapor interface only once. Let us construct a cylinder with the transverse cross section s, whose gene ratrix
is along the x; axis. This cylinder cuts off a part of the liquid—vapor interface. Different elements do of this
surface can be located at different points along the x, axis. We shall denote by Ox|%, = x the total projection on
the x, axis of such elements, located at the point x;, = x. We now introduce the quantity oy, |x, = «/s. The mean
of this quantity with respect to a large number of cylinders &(x, t) represents the probability that a part of the
liquid —vapor interface will be found at the point x, = x. It follows from this definition that

+Swg(x,zf)dx = 1. 4)
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The quantity £(x, t) can be considered not only as the probability, but also as the average share of the interface
projection per unit cross section of the specimen at the point x. Taking this into account, we can write the
‘transport equation for £(x, t).

The flux of this quantity is the product between it and the rate at which it intersects the unit area. In the
case under consideration, a part of the liquid—vapor interface, £, intersects the area at the rate v¥, while the
other part, §,, intersects it at the rate v¥. Here v¥ is the velocity of the interface when it is not preceded by a
vapor cavity, and v¥ is the velocity of the interface when the latter is preceded by a vapor cavity. The value of
v} depends on the cavity parameters, v§ = v¥(xy, x,, X3}, and, moreover, g +E =L

Let us introduce the quantity &), the density of £, defining it as the part of £ which is preceded by cavi-
ties with the parameters xy, x,, X5:

E(x) = _\ : ‘ —(\) Iiédxzdxadxl. (5)
The flux of &(x, t) is then written
ry =oiE, + ( x'_\.ﬂxlf\' v¥e dxgdx,dx,. ©
—x 0 0
From the definition of &, it follows that
&, = aN(%y, X, X5, 1), (7)

As a result, we write Ty inthe following form by taking into account (6):

X=Xy ®

re = v*g - u\ j (vF — 0¥ )uxIN (%, Xy, Xy )X A5,y (8)
“x 0 0
and the following transport equation holds for &{x, t):

o % X X—Xy oc:

%—%— + gg;_g = — a%_f” g é (v¥ —Uf) N (X X t)dx,dx,dr, + RY + R, (9)
where R™ and R~ are the terms reflecting the interaction between the interface and the vapor cavity at the
moment when the latter collapses. We can readily write explicit expressions for the collision integrals R*
and R™. For this, we introduce the quantity ®(x,, x,, x;), which is equal to the flux of vapor cavities with the
parameters x, and x;, the origin of which intersects the unit area which is located at the point x; and moves
at the velocity v¥. Using ¢(x,, x,, X;), we represent the collision integrals Rt and R~ in the following form:

R = j Snxglb (X0 Xan%s) & (%y + ;) digdx,, (10)
00

R =—

Sy 8

Snx%@(xl "_xzyxzvxa) g (‘xl) dede (11)
0

The quantity @ (x4, x,, X;) is expressed in terms of N(x,, X,, X3, t) as follows:
D(xyHpr%y) = (v + Uy — 0F) N(iptnpl)- a2)
Equations (1) and (9) provide a statistical description of the evolution of vapor cavities and of the liquid—vapor

interface during coolant bubbling in a porous solid,

Transport Equation Based on the Statistical Model of

Coolant Bubbling in a Porous Solid.

In order to complete the statement of the problem, it is necessary to determine the velocities vy, vy, vs, v’f,
and vz*in FEqgs. (1) and (9) and write the macroscopic transport equations on the basis of the described statistical
model of bubbling.

Since 7y <njp, the vapor cavity moves faster than the surrounding liquid for the same pressure distribu-
tion. In a layer whose thickness is of the order of the cavity radius the liquid in front of the cavity is pushed
forward at a rate equal to the velocity of the front boundary of the cavity. Further on along the coolant flow,
the effect of the cavity is less pronounced, and the liquid there filters through at the rate v;. If, in the mo-
mentum balance, we take into account the fact that a part of the liquid filters throughata rate equaltothevapor
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velocity, the model becomes unnecessarily complicated. Therefore, we shall subsequently consider that all of
the liquid filters through at the mean velocity ¥, while vapor has the mean velocity v,. We thereby assume
that v} = v¥,

- The velocity of the liquid—~vapor interface is expressed in terms of the liquid velocity in pores vy in the
following manner:
T

¥ =7p _——
1 ! 0 (13)

where 7 is the evaporation rate, which, according to [4], is given by

A
T=——e[p(T) —pl. (14)
V 2aR*T [ps(T) —#l
The rate at which the vapor cavity moves is equal to the vapor velocity in pores vy, If the cavity expands
equally in the direction of motion and in the opposite direction, we have

Ulzﬂv—? . ) (15)

The velocities v, and v, characterize the growth of the longitudinal and transverse dimensions of the
vapor cavity. These values can be estimated by considering the vapor mass balance in the cavity. It can be
shown that, in the limiting case ofvery intensive phase transition, when the cavity grows primarily on account
of the vapor entering it, the equation of vapor mass balance in the cavity is written as follows:

4aQ
Ovgr =7, {16)

where Q is the volume of the cavity, and s is its surface area. Assuming that the longitudinal and the trans-
verse dimensions of the cavity increase equally, i.e., v, = v;, and considering (14), we obtain the following
estimate:

v-xay/ KT p(T)—p 206+ x) (17)
2np P 2%, +x, ’

where x, and x; are the longitudinal and the transverse dimensions of the cavity.

We introduce the quantity sy, equal to the fraction of the unit cross section of the specimen where vapor
filters through. It is expressed in the following manner in terms of N(x;. %y, X3, t) and £(x, t):

X o ac X
Sy= j‘ J' _fnng(xl,xz,xs,t)dxsdxzdxl + jg(xl)dxl. (18)
—c0 Xx—3x,; 0 —

The similar quantity s; for the liquid is then equal to
$; =1—s, 19)

By using these quantities, we can express the flux density of the coolant mass, the momentum flux density, the
energy flux density, and the other quantities figuring in transport equations.

Let us write the final system of transport equations for the case of one-dimensional steady-state filtra-
tion of a vapor-liquid mixture through a porous solid. This system includes the equation of mass conservation
for the coolant,

d ‘
A [EsurSyPy0y + Esursy P71 =0, (20)

the equation of motion of the vapor—liquid mixture,

dp

d 5 s Esur
85(11‘71? = _‘dj(s S0 v'v+ EsurSy Py df)_?' (T]VUVSV-*— T]lUlS l)’ (21)

swrvv

the equation of motion of the vapor phase,

d d d _ €
Ssursvag = " dx (EsurSyP73) "“E(E Sy P, 2 JUp — %IEVIVUVSV. (22)
and the equation of energy transport,
d , dT
dx [ssur(Pv{'vthv+ pyusih l)”"ji;] =r(x). (23)
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Assuming that the additive law of the summation of heat conductivities holds for A, we have
7. :;”ZSZESUI—{—;‘VsVESlE ':—;.501(1 —“-Ssol). (24)
The following boundary conditions must be added to Egs. (20)-(23):

‘ : dr | ' dr
Pieo™ Pii Pyt = Py }'»d_x_ix:o =loror (T —=Ta)hos —A7o =4. (25)

X=

The above system of transport equations holds only within the framework of our model of liquid bubbling
in a porous solid,

NOTATION
; is the coordinate;
t is the time;
p1 is the density;
Py is the vapor density;
n is the dynamic viscosity of the liquid;
Ty is the dynamic viscosity of vapor;
M is the thermal conductivity of the liquid;
Ay is the thermal conductivity of vapor;
Agol is the thermal conductivity of the porous matrix:
Esur is the surface porosity;
p is the pressure;
T is the temperature;
pS(T) is the saturated vapor pressure at the temperature T,
n is the molecular weight;
R* is the universal gas constant;
hy, is the enthalpy of vapor;
hy is the enthalpy of the liquid;
cpy is the specific heat of the liquid at constant pressure;
l is the length of porous specimen;
q is the incident thermal flux;
r(x) is the density of external energy sources;
T, is the liquid temperature at a point remote from the porous wall;
Py is the inlet pressure;
P, is the outlet pressure;
k is the permeability of the porous structure.
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